Các công thức đạo hàm và đạo hàm lượng giác đầy đủ và chi tiết nhất

Dưới đây là bảng công thức đạo hàm, đạo hàm lượng giác, các hàm lượng giác và công thức đạo hàm cao cấp đầy đủ nhất có thể giúp các bạn dễ dàng ôn lại những kiến thức toán học về đạo hàm đã được học một cách nhanh chóng để giải bài tập nhanh hơn, hiệu quả hơn.

Đạo hàm là gì?

1. Định nghĩa đạo hàm

Hàm số 

y=f\left( x \right)

 liên tục trên 

\left( a,b \right)

, được gọi là có đạo hàm tại 

{{x}_{0}}\in \left( a,b \right)

 nếu giới hạn sau tồn tại hữu hạn:

\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}

và giá trị của giới hạn đó gọi là giá trị đạo hàm của hàm số 

y=f(x)

 tại điểm 

{{x}_{0}}

. Ta kí hiệu là 

f'\left( {{x}_{0}} \right)

 tức là:

f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}

 

Chú ý:

  • Đại lượng \Delta x = x - {x_0}được gọi là số gia của đối số {x_0}.
  • Đại lượng \Delta y = f\left( x \right) - f\left( {{x_0}} \right)= f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) được gọi là số gia tương ứng của hàm số. Như vậy:

y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}

 

2. Cách tính đạo hàm bằng định nghĩa

Để tính đạo hàm của hàm số y=f(x) tại điểm {{x_0}} bằng định nghĩa ta có quy tắc sau đây:

Phương pháp 1:

Bước 1: Giả sử ∆x là số gia của đối số tại x0, tính:

\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)

Bước 2: Lập tỉ số \frac{{\Delta y}}{{\Delta x}}

Bước 3: Tìm 

\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}

  • Nếu \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} tồn tại hữu hạn thì tại x0 hàm số có đạo hàm là f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}
  • Nếu \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} không tồn tại hữu hạn thì tại x0 hàm số không có đạo hàm

Phương pháp 2: Tính \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}

  • Nếu \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} tồn tại hữu hạn thì tại x0 hàm số có đạo hàm là f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}
  • Nếu \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} không tồn tại hữu hạn thì tại x0 hàm số không có đạo hàm.

3. Mối liên hệ giữa sự tồn tại đạo hàm và tính liên tục

Định lí: Nếu hàm số f\left( x \right) có đạo hàm tại điểm {{x}_{0}} thì f\left( x \right) liên tục tại {{x}_{0}}.

Chú ý: Định lí trên chỉ là điều kiên cần, tức là một hàm có thể liên tục tại điểm {{x}_{0}} nhưng hàm đó không có đạo hàm tại {{x}_{0}}.

Đạo hàm bên trái 

f'\left( {{x}_{0}}^{-} \right)=\underset{x\to {{x}_{0}}^{-}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}

Đạo hàm bên phải 

f'\left( {{x}_{0}}^{+} \right)=\underset{x\to {{x}_{0}}^{+}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}

 

Hệ quả:

Hàm số 

f\left( x \right)

 có đạo hàm tại 

{{x}_{0}}\Leftrightarrow \exists f'\left( {{x}_{0}}^{+} \right),f'\left( {{x}_{0}}^{-} \right):f'\left( {{x}_{0}}^{+} \right)=f'\left( {{x}_{0}}^{-} \right)

4. Ý nghĩa của đạo hàm

Đạo hàm của hàm số 

f\left( x \right)

 tại điểm 

{{x}_{0}}

 là hệ số góc tiếp tuyến tại điểm 

M\left( {{x}_{0}},f\left( {{x}_{0}} \right) \right)

 đó.

Ta có phương trình tiếp tuyến tại điểm M:

y-{{y}_{0}}=f'\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)

 

 

Quy tắc cơ bản của đạo hàm

Giả sử 

u = u\left( x \right);v = v\left( x \right)

 là các hàm số có đạo hàm tại điểm 

x

 thuộc khoảng xác định. Ta có:

\begin{matrix}  \left( {u + v} \right)\prime  = u\prime  + v\prime  \hfill \\  \left( {u - v} \right)\prime  = u\prime  - v\prime  \hfill \\  \left( {uv} \right)\prime  = u\prime v + uv\prime  \hfill \\  \left( {\dfrac{u}{v}} \right)\prime  = \dfrac{{u\prime v - v\prime u}}{{{v^2}}},v = v\left( x \right) \ne 0 \hfill \\ \end{matrix}

 

Bằng phương pháp quy nạp toán học ta có một số công thức đạo hàm mở rộng như sau:

  • \left( {{u}_{1}}\pm {{u}_{2}}\pm ...\pm {{u}_{n}} \right)'={{u}_{1}}'\pm {{u}_{2}}'\pm ...\pm {{u}_{n}}'
  • \left( u.v.w \right)'=\acute{u}.v.w+u.v'.w+u.v.w'
  • \left[ k.u\left( x \right) \right]'=k.u\left( x \right)'\left( k=const \right)
  • {{\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]}^{'}}=\frac{u'\left( x \right).v\left( x \right)-v'\left( x \right).u\left( x \right)}{v{{\left( x \right)}^{2}}}
  • \left[ u'\left( x \right) \right]'=n{{u}^{n-1}}\left( x \right)u'\left( x \right)
  • \left[ \frac{a}{u\left( x \right)} \right]'=-\frac{a.u'\left( x \right)}{{{u}^{2}}\left( x \right)}

Quy tắc đạo hàm của hàm số hợp

Nếu y=y(u(x)) thì y'(x)=y'(u)\times u'(x)

 

Bảng đạo hàm của các hàm số cơ bản

Đạo hàm sơ cấp Đạo hàm hàm số hợp

a'=0,a=const

 

\left( {{x}^{a}} \right)'=a.{{x}^{a-1}}

\left(u^a\right)^{\prime}=a \cdot u^{\prime} \cdot u^{a-1}

\left( \sqrt{x} \right)'=\frac{1}{2\sqrt{x}}

\left( \sqrt{u} \right)'=\frac{u'}{2\sqrt{u}}

\left( \sqrt[n]{x} \right)'=\frac{1}{n\sqrt[n]{{{x}^{n-1}}}}

\left( \sqrt[n]{u} \right)'=\frac{u'}{n\sqrt[n]{{{u}^{n-1}}}}

(\sin x)^{\prime}=\cos x (\sin u)^{\prime}=u^{\prime} \cdot \cos u
(\cos x)^{\prime}=-\sin x (\cos u)^{\prime}=-u^{\prime} \cdot \sin u
(\tan x)^{\prime}=\frac{1}{\cos ^2 x}=1+\tan ^2 x (\tan u)^{\prime}=\frac{u^{\prime}}{\cos ^2 u}=u^{\prime} \cdot\left(1+\tan ^2 u\right)
(\cot x)^{\prime}=\frac{-1}{\sin ^2 x}=-\left(1+\cot ^2 x\right) (\cot u)^{\prime}=\frac{-u^{\prime}}{\sin ^2 u}=-u^{\prime} \cdot\left(1+\cot ^2 u\right)
\log _a x^{\prime}=\frac{1}{x \ln a} \log _a u^{\prime}=\frac{u^{\prime}}{u \cdot \ln a}
\ln x{ }^{\prime}=\frac{1}{x} \ln u^{\prime}=\frac{u^{\prime}}{u}
a^x{ }^{\prime}=a^x \cdot \ln a a^u{ }^{\prime}=a^u \cdot u^{\prime} \cdot \ln a
e^x{}^{\prime}=e^x \left(e^u\right)^{\prime}=u^{\prime} \cdot e^u
\left(\frac{a_1 x^2+b_1 x+c_1}{a_2 x^2+b_2 x+c_2}\right)=\frac{\left|\begin{array}{ll}a_1 & b_1 \\ a_2 & b_2\end{array}\right|. x^2+2\left|\begin{array}{ll}a_1 & c_1 \\ a_2 & c_2\end{array}\right| .x+\left|\begin{array}{ll}b_1 & c_1 \\ b_2 & c_2\end{array}\right|}{\left(a_2 x^2+b_2 x+c_2\right)^2}

Công thức đạo hàm lượng giác

(\sin x)’=\cos x

 

(\cos x)’=−\sin x

(\tan x)′=(\frac{\cos x}{\sin x})′=\frac{\cos^2x+\cos^2x}{\sin^2x}=\frac{1}{\cos^2x}

 

(\cot x)′=(\frac{\sin x}{\cos x})′=\frac{-\sin^2x−\sin2x}{\cos^2x}=−(1+\cot^2x)

\left(\sec\left(x\right)\right)'=\frac{1}{\left(\cos x\right)'}=\frac{\sin\ x}{\cos^2x}=\frac{1}{\cos x}\times\frac{\sin x}{\cos x}=\sec\left(x\right)\times\tan x

\left(\csc\left(x\right)\right)'=\left(\frac{1}{\sin x}\right)'=-\frac{\cos x}{\sin^2x}=-\frac{1}{\sin x}\times\frac{\cos x}{\sin x}=-\csc\left(x\right)\cot\left(x\right)

\left(\arcsin\left(x\right)\right)'=\frac{1}{\sqrt{1-x^2}}

\left(\arccos\left(x\right)\right)'=\frac{-1}{\sqrt{1-x^2}}

\left(\arctan\left(x\right)\right)'=\frac{1}{x^2+1}

Đạo hàm cấp cao

(x^m)^{\left(n\right)}=m(m−1)...\ (m−n+1).x^{\left(m−n\right)}

(\ln x)^{(n)}=\frac{(−1)^{n−1}(n−1)!}{x^n}

(a^x)^{(n)}=a^x.\ln^na\ \ \ \ với\ a>0.

(\sin x)^{(n)}=\sin(x+n\frac{\pi}{2})

\cos x)^{(n)}=\cos(x+n\frac{\pi}{2})

\left(e^x\right)^{(n)}=e^x

(\frac{1}{x})^{(n)}=(−1)^n.n!.x^{−n−1}

Công thức Lepnit

Nếu u và v là các hàm khả vi n lần thì: 

{{\left( u.v \right)}^{\left( n \right)}}=\sum{\begin{matrix}

n \\

k=0 \\

\end{matrix}}C_{n}^{k}.{{u}^{k}}.{{v}^{\left( n-k \right)}}

 với 

C_{n}^{k}

 kí hiệu tổ hợp chập k của n phần tử

C_{n}^{k}=\frac{n\left( n-1 \right)...\left( n-k+1 \right)}{k!}

 

Bảng nguyên hàm

\int x^a d x=\frac{x^{a+1}}{a+1}+c,(a \neq-1)

\int \sin x d x=-\cos x+c

\int \cos x d x=\sin x+c

\int \frac{1}{\cos ^2 x} d x=\tan x+c

\int \frac{1}{\sin ^2 x} d x=-\cot x+c

\int \frac{1}{x} d x=\ln |x|+c

\int a^x d x=\frac{a^x}{\ln a}+c

\int e^x d x=e^x+c

\int(a x+b)^a d x=\frac{1}{a} \cdot \frac{(a x+b)^{a+1}}{a+1}+c

\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c

\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c

\int \frac{1}{\cos ^2(a x+b)} d x=\frac{1}{a} \tan (a x+b)+c

\int \frac{1}{\sin ^2(a x+b)} d x=-\frac{1}{a} \cot (a x+b)+c

\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c

\int a^{a x+\beta} d x=\frac{a^{a x+\beta}}{\alpha \cdot \ln a}+c

\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+c